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Abstract. We investigate the decays of π0, η and η′ into two photons in an effective U(3) chiral Lagrangian
approach without employing large-Nc arguments. Tree level and one-loop contributions from the anomalous
Wess-Zumino-Witten Lagrangian are calculated and the importance of η-η′ mixing is discussed. Unitarity
corrections beyond one loop play an important role for the decays with off-shell photons and are included
by employing a coupled-channel Bethe-Salpeter equation which satisfies unitarity constraints and generates
vector mesons from composed states of two pseudoscalar mesons.

PACS. 12.39.Fe Chiral Lagrangians – 13.40.Hq Electromagnetic decays

1 Introduction

The two-photon decays π0, η, η′ → γγ are phenomenolog-
ical manifestations of the chiral anomaly of QCD and can
provide important information on the chiral symmetry of
the strong interactions. In order to study the phenomeno-
logical implications of the chiral anomaly, it is convenient
to employ a chiral effective Lagrangian, since at low ener-
gies the effective degrees of freedom are colorless hadrons
rather than quarks and gluons. The effective Lagrangian
contains a piece which reproduces the anomalous behavior
of the effective action under chiral transformations. Such
a Lagrangian was systematically constructed by Wess and
Zumino [1] by directly integrating the anomalous Ward
identities and later Witten provided a representation of
the anomaly which illustrated the topological content of
the theory [2].

There are many anomalous processes which can be
calculated from the Wess-Zumino-Witten (WZW) La-
grangian, such as π0 → γγ, η → γγ, γ → 3π, η → π+π−γ
etc. Originally, the WZW Lagrangian was formulated for
the eight Goldstone bosons (π,K, η) which form an octet
under chiral SU(3) transformations, but it can be eas-
ily extended to include the η′, the singlet counterpart of
the Goldstone boson octet [3–6]. Although the η′ is not
a Goldstone boson due to the axial U(1) anomaly of the
strong interactions, it combines with the Goldstone bosons
to a nonet at the level of the effective theory. This allows
the phenomenological investigation of η′ decays, such as
η′ → γγ and η′ → π+π−γ.
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The present work deals with the two-photon decays of
π0, η and η′ with one, both or none of the photons being
off-shell, π0, η, η′ → γ(∗)γ(∗). The decays P → γγ (P =
π0, η, η′) with both photons on-shell are dominated by the
WZW Lagrangian. They have been calculated up to one-
loop order within chiral perturbation theory (ChPT) and
were shown not to receive non-analytic corrections from
the one-loop diagrams which were compensated by the
chiral corrections of the pseudoscalar decay constants [3,
4]. This is also in agreement with the complete one-loop
renormalization of the anomalous Lagrangian [7–9], where
it was shown by using heat kernel techniques that in di-
mensional regularization one-loop diagrams for P → γγ
do not lead to divergences that must be renormalized by
appropriate counterterms of higher chiral order. It was fur-
thermore argued [3] that a consistent picture of η-η′ mix-
ing emerged from the two-photon decays with one mixing
angle of approximately −20◦.

More recently, a two-mixing-angle scheme has been
proposed by Kaiser and Leutwyler [5,10,11] for the calcu-
lation of the pseudoscalar decay constants in large-Nc chi-
ral perturbation theory. The two-angle scenario has been
adopted in a phenomenological analysis of the two-photon
decay widths of the η and η′, the ηγ and η′γ transition
form factors, radiative J/Ψ decays, as well as of the decay
constants of the pseudoscalar mesons [12,13]. The authors
observe that within their phenomenological approach the
assumption of one mixing angle is not in agreement with
experiment whereas the two-mixing-angle scheme leads to
a very good description of the data. As pointed out in
these investigations, the analysis with two different mixing
angles leads to a more coherent picture than the canonical
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treatment with a single angle. In particular, the calcula-
tion of the pseudoscalar decay constants within the frame-
work of large-Nc chiral perturbation theory requires two
different mixing angles [10]. (A similar investigation was
performed in [14] but with a different parameterization.)

In addition, it was shown in [15] that even at leading
order η-η′ mixing does not obey the usually assumed one-
mixing-angle scheme, if large-Nc counting rules are not
employed. One purpose of this work is to critically re-
examine the contributions from η-η′ mixing to the two-
photon decays.

For the decays P → γγ∗ contributions from higher
chiral orders will become increasingly more important for
larger photon virtualities. In this case, one-loop contribu-
tions turn out to be divergent and must be renormalized
by appropriate counterterms [4,7,8]. The remaining finite
parts of the relevant counterterms can be estimated by
vector meson exchange contributions [8]. In [8], the vec-
tor mesons were included explicitly and integrating them
out from the effective theory produced contact interac-
tions. An underlying assumption of this approach is that
the masses of the vector mesons are much larger than the
involved momenta.

Alternatively, the chiral Lagrangian for the Goldstone
bosons is able to reproduce a number of meson reso-
nances such as the f0(980) and the ρ(770), when com-
bined with non-perturbative Bethe-Salpeter approaches,
which are employed in such a way so that they ensure uni-
tarity [16,17]. Within these approaches, effective coupled-
channel potentials are derived from the chiral meson La-
grangian and iterated in Bethe-Salpeter equations (BSEs).
The BSE generates dynamically quasi-bound states of the
mesons and accounts for the exchange of resonances with-
out including them explicitly. The usefulness of this ap-
proach lies in the fact that from a small set of parameters
a large variety of data can be explained and no additional
assumptions need to be made on the couplings of the reso-
nances. In [18], the approach has been extended to include
the η′ and successfully applied to the hadronic decays of η
and η′ in [19]. The main purpose of the present work is to
embed the coupled-channel approach in the two-photon
decays P → γ(∗)γ(∗) and to investigate the importance
of vector mesons for these decays from a different per-
spective. This will also allow us to give predictions for the
double Dalitz decays with two off-shell photons which have
not yet been studied experimentally. It may further clar-
ify the question whether double vector meson dominance
holds, which is also an important issue for the anomalous
magnetic moment of the muon and kaon decays [20].

This work is organized as follows. Section 2 introduces
the notation and the tree level contributions to the decays
which arise from the WZW Lagrangian. One-loop contri-
butions and mixing effects are described and discussed in
sect. 3. The application of the coupled-channel analysis to
the decays is outlined in sect. 4 and the numerical results
are presented in sect. 5. We conclude with a summary of
our findings.

2 Decays at tree level

The effective Lagrangian for the pseudoscalar meson nonet
(π,K, η8, η0) reads up to second order in the derivative
expansion [5,11,21,22]

L(0+2) = −V0 + V1〈DµU
†DµU〉 + V2〈U†χ+ χ†U〉

+iV3〈U†χ− χ†U〉 + V4〈U†DµU〉〈U†DµU〉, (1)

where we have presented only the terms relevant for the
present work. The unitary matrix U is a 3 × 3 matrix
containing the Goldstone boson octet (π±, π̃0,K, η8) and
the η0. Its dependence on π̃0, η8 and η0 is given by

U = exp
(
diag(1,−1, 0) · iπ̃0/f

+diag(1, 1,−2) · iη8/
√

3f + i
√

2η0/
√

3f + . . .
)
. (2)

The expression 〈. . .〉 denotes the trace in flavor space, f is
the pion decay constant in the chiral limit and the quark
mass matrix M = diag(mu,md,ms) enters in the combi-
nation χ = 2BM with B = −〈0|q̄q|0〉/f2 being the order
parameter of the spontaneous symmetry violation. The
covariant derivative is defined by

DµU = ∂µU − i(vµ + ãµ)U + iU(vµ − ãµ). (3)

The dependence of the effective Lagrangian on the run-
ning scale of QCD due to the anomalous dimension of the
singlet axial current A0µ = 1

2 q̄γµγ5q is absorbed into the
factor

√
λ in the axial-vector connection ãµ:

ãµ = aµ +

√
6λ− f
3f

〈aµ〉, (4)

which is the scale-independent combination of the octet
and singlet parts of the external axial-vector field aµ,
cf. [22] for details. Due to its scale dependence,

√
λ cannot

be determined from experiment, and all quantities involv-
ing it are unphysical.

The coefficients Vi are functions of η0, Vi(η0/f), and
can be expanded in terms of this variable. At a given order
of derivatives of the meson fields U and insertions of the
quark mass matrix M, one obtains an infinite string of
increasing powers of η0 with couplings which are not fixed
by chiral symmetry. Parity conservation implies that the
Vi are all even functions of η0 except V3, which is odd, and
V1(0) = V2(0) = V1(0) − 3V4(0) = 1

4f
2 gives the correct

normalization for the quadratic terms of the mesons. The
potentials Vi are expanded in the singlet field η0,

Vi

[η0
f

]
= v(0)i + v(2)i

η20
f2

+ v(4)i

η40
f4

+ . . . , for i = 0, 1, 2, 4,

V3

[η0
f

]
= v(1)3

η0
f

+ v(3)3
η30
f3

+ . . . (5)

with expansion coefficients v(j)i to be determined phe-
nomenologically.

The Lagrangian L(0+2) contains only terms of natural
parity. The photonic decays π → γγ, η → γγ, η′ → γγ, on
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the other hand, are not covered by L(0+2), since they arise
from the unnatural-parity part of the effective Lagrangian
which collects the terms that are proportional to the ten-
sor εµναβ . Within the effective theory the chiral anomalies
of the underlying QCD Lagrangian are accounted for by
the WZW term [1,2,5]1

SWZW(U, v) =
∫
d4xLWZW =

− i

80π2

∫
M5

〈Σ5〉 − i

16π2

∫
M4

W (U, v) , (6)

where

W (U, v)=〈ΣU†dvUv+Σvdv+Σdvv− iΣ3v〉−(U↔ U†)
(7)

with Σ = U†dU and we set Nc = 3 for the number of col-
ors. We have displayed only the pieces of the Lagrangian
relevant for the present work and adopted the differential
form notation of [5],

v = dxµvµ, d = dxµ∂µ (8)

with the Grassmann variables dxµ which yield the vol-
ume element dxµdxνdxαdxβ = εµναβd4x. The operation
(U ↔ U†) indicates the interchange of U and U†. The
first integral on the right-hand side in eq. (6) is taken
over the five-dimensional manifold M5 which is the direct
product of the Minkowski spaceM4 and the finite interval
0 ≤ x5 ≤ 1, while the Grassmann algebra is supplemented
by the fifth element dx5. The matrix-valued fields U(x, x5)
in the first integral are functions on this five-dimensional
manifold and interpolate smoothly between the identity
matrix U(x, 0) = 1 and the matrix U(x) = U(x, 1). The
value of the first integral is independent of the particu-
lar choice of the interpolating functions U(x, x5), whereas
the integration for the second term in eq. (6) extends only
over the Minkowski space M4. The external vector field
v = −eQA describes the coupling of the photon field
A = dxµAµ to the mesons with Q = 1

3diag(2,−1,−1)
being the charge matrix of the light quarks.

At tree level only the terms quadratic in the vector
fields v contribute and one arrives at the following pieces
of the WZW Lagrangian:

d4xLWZW = − i

16π2
〈U†dUU†dvUv + U†dUvdv

+U†dUdvv − UdU†UdvU†v − UdU†vdv
−UdU†dvv〉 + . . . . (9)

However, this is not the whole story, since there exist fur-
ther terms at fourth chiral order which are gauge invariant
and do not contribute to the chiral anomalies. A complete
set of these terms has been given in [5], out of which the
following three contact terms contribute:

d4xL(4)ct = W1〈UdvU†dv〉 +W2〈dvdv〉
+iW3〈dUdU†dv + dU†dUdv〉, (10)

1 Note that for our purposes we can safely set the singlet
axial vector field 〈aµ〉 and the derivative of the QCD vacuum
angle, ∂µθ, to zero in SWZW which enables us to work with the
renormalization group invariant form of the anomaly.

Fig. 1. Tree diagram of the decay P → γ(∗)γ(∗), where k(′)

and ε(′) denote the momenta and polarizations of the photons,
respectively.

where the potentials W1,2,3 are odd functions of the sin-
glet field η0. The first two terms contribute already at
tree level, whereas the last term represents a vertex for a
one-loop diagram and will be discussed in the next sec-
tion. Following the steps of [22], it is straightforward to
see that these terms are needed to absorb the QCD renor-
malization scale dependence via a set of redefinitions of
the potentials Wi into the factor

√
λ of ãµ in eq. (4).

The decay at tree level is depicted in fig. 1 and the
pertinent amplitudes are given by

A(tree)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ 1
4π2f

α
(tree)
P

(11)
with

α
(tree)
π0 = 1, α(tree)η =

1√
3
,

α
(tree)
η′ = 2

√
2
3
− 16π2

3
(w(1)1 + w(1)2 ), (12)

where w(1)1 , w(1)2 are the leading expansion coefficients of
the potentials W1 and W2, respectively. It is important
to note that in our scheme η-η′ mixing is of second chiral
order [15] and will modify the sub-leading order, i.e. the
one-loop order of the decay amplitudes. This is in con-
tradistinction to large-Nc ChPT, where η-η′ mixing con-
tributes at leading order.

3 One-loop contributions

The one-loop diagrams for P → γ(∗)γ(∗) of order O(p6)
have anomalous vertices from the following pieces of the
WZW Lagrangian:

d4xLWZW = − i

16π2
〈U†dUU†dvUv + U†dUvdv

+U†dUdvv − iU†dUU†dUU†dUv〉
−(U ↔ U†) + . . . . (13)
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Fig. 2. One-loop diagrams contributing to P → γ(∗)γ(∗). In
(b) the crossed diagram is not shown.

After expanding U = exp( i
√
2

f φ) in the meson fields φ, we
arrive at the expression

d4xLWZW = −
√

2
8π2f3

(
〈dφ [φ, [φ , v dv ]]〉

−〈dφ [φ , dv] [φ, v]〉 − 2i〈dφ dφ dφ v〉
)

+ . . . , (14)

where we have only presented the relevant terms for the
one-loop diagrams. The one-loop diagrams at order O(p6)
contributing to the decays P → γ(∗)γ(∗) are shown in
fig. 2.

The tadpole contributions in fig. 2a read

A(tad)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ

× 1
4π2F 3P

(
β
(tad),π
P ∆π + β(tad),KP ∆K

)
(15)

with ∆φ being the finite parts of the tadpoles:

∆φ =

(∫
ddl

(2π)d

i

l2 −m2φ + iε

)
finite

=
m2φ

16π2
ln
m2φ
µ2
,

(16)
and µ is the scale introduced in dimensional regulariza-
tion. In the present work we are only concerned with the
finite pieces of the diagrams and neglect the divergent por-
tions throughout. The coefficients β(tad),φP are given by

β(tad),ππ = −4
3
, β(tad),πη = − 2√

3
,

β
(tad),π
η′ = −2

√
2
3

+ 16π2w(1)1 ,

β(tad),Kπ = −5
3
, β(tad),Kη = − 1√

3
,

β
(tad),K
η′ = −2

√
2
3

+ 16π2w(1)1 . (17)

We have furthermore replaced the pion decay constant in
the chiral limit, f , by the expressions FP which include
the one-loop corrections. The corrections have been calcu-
lated in U(3) ChPT without imposing large-Nc counting

rules and in infrared regularization [15]. We can employ
the same formulae also for the present work by noting
that only tadpoles contribute at one-loop order to the de-
cay constants. In infrared regularization the η′ tadpole
vanishes, whereas the tadpoles for the Goldstone boson
octet remain unaltered. This implies that the η′ tadpole
does not contain any infrared physics and can be absorbed
completely into the low-energy constants (LECs) of the
effective Lagrangian. It is neither a function of the Gold-
stone boson masses nor of the external momenta, it is just
a constant. We will therefore assume that η′ tadpole con-
tributions have been compensated by renormalizing the
LECs appropriately and will work with the renormalized
values without indicating it explicitly.

The expansions of the decay constants in terms of the
Goldstone boson masses up to one-loop order are given
here for completeness [15]:

Fπ = f
[
1 + 4β(0)4

2m2K +m2π
f2

+ 4β(0)5
m2π
f2

− ∆π + 1
2∆K

f2

]
,

Fη = f

[
1 + 4β(0)4

2m2K +m2π
f2

+ 4β(0)5
m2η
f2

−
3
2∆K

f2

]
,

Fη′ =
f√
6λ
Fη′0 = f

[
1 + 4

2m2K +m2π
3f2

(
3β(0)4 + β(0)5 − 9β(0)17

+3β(0)18 + 3β(0)46 + 9β(0)47 − 3β(0)53 − 3
2

√
6β(1)52

)]
. (18)

The LECs β(j)i originate from the natural-parity part of
the effective Lagrangian at fourth chiral order

L(4) =
∑

k βkOk, (19)

where the contributing fourth order operators are

O 4 = −〈CµCµ〉〈M〉, O 5 = −〈CµCµM〉,
O17 = 〈Cµ〉〈Cµ〉〈M〉, O18 = −〈Cµ〉〈CµM〉,
O46 = 2i〈ãµ〉〈CµM〉, O47 = 2i〈ãµ〉〈Cµ〉〈M〉,
O52 = −2〈M〉∂µ〈ãµ〉, O53 = 2i〈N〉∂µ〈ãµ〉,

(20)
and we made use of the following abbreviations:

Cµ = U†DµU, M = U†χ+ χ†U,

N = U†χ− χ†U. (21)

The βk are functions of the singlet field, βk(η0), and can
be expanded in the same manner as the Vi(η0). Note that
the βk also have divergent pieces, in order to compensate
the divergences from the loops, but in the present work
we are only concerned with the finite parts and use the
same notation for simplicity. The decay constant of the η′
related to the singlet axial-vector current, Fη′0, is defined
by the matrix element

〈0| 1√
6
q̄γµγ5q|η′〉 = ipµFη′0. (22)

Due to the anomalous dimension of the singlet axial cur-
rent, Fη′0 depends on the running scale of QCD and its
value cannot be determined phenomenologically. In order
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to account for the chiral corrections for f , we have there-
fore employed the scale-invariant ratio Fη′ = f√

6λ
Fη′0 in

the expression for the η′ decay amplitude in eq. (15).
We replace the pion decay constant in the chiral limit,

f , by the chirally corrected decay constants FP also in
the tree level result, eq. (11). This replacement yields
corrections at O(p6) which must be compensated. If the
decay constants FP in eq. (18) are written as FP =
f(1 + δFP /f

2), it induces at sixth chiral order the cor-
rections

A(f)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ 1
4π2F 3P

α
(tree)
P δFP .

(23)
The contributions from the diagram of fig. 2(b) yield

A(uni)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ

× 1
4π2F 3P

(
β
(uni),π
P [I(m2π; k2) + I(m2π; k′2)]

+β(uni),KP [I(m2K ; k2) + I(m2K ; k′2)]
)
. (24)

The integral I is given by

I(m2; p2) =
2
3

(
1
2
∆+

(
m2 − p

2

4

)
Gmm(p2)

+
1

96π2
(p2 − 6m2)

)
, (25)

where G is the finite part of the scalar one-loop integral

Gmm̄(p2) =(∫
ddl

(2π)d

i

(l2 −m2 + iε)((l − p)2 − m̄2 + iε)

)
finite

, (26)

which reads

Gmm̄(p2) =
1

16π2

[
− 1 + ln

mm̄

µ2
+
m2 − m̄2
p2

ln
m

m̄

−2
√
λmm̄(p2)
p2

artanh

√
λmm̄(p2)

(m+ m̄)2 − p2
]
,

λmm̄(p2) =
(
(m− m̄)2 − p2)((m+ m̄)2 − p2). (27)

For the particular case with on-shell photons, the integral
I reduces to the simple expression I(m2; 0) = ∆. The
coefficients β(uni),φP are given by

β(uni),ππ = 1, β(uni),πη =
1√
3
,

β
(uni),π
η′ =

√
2
3
− 16π2w(1)3 ,

β(uni),Kπ = 1, β(uni),Kη =
1√
3
,

β
(uni),K
η′ =

√
2
3
− 16π2w(1)3 . (28)

3.1 Wave function renormalization, η-η′ mixing, and
counterterms

There are further chiral corrections at O(p6) which arise
from wave function renormalization and η-η′ mixing.
The relation between the original U(3) fields (π̃0, η8, η0)
and the renormalized states (π0, η, η′) without employing
large-Nc counting rules has already been derived in [15]. It
is given in terms of the 3×3 matrix 1+R(2), (π̃0, η8, η0)T =
(1+R(2))(π0, η, η′)T , with

R
(2)
π̃0π0 =

(−4[2m2K +m2π]β(0)4

−4m2πβ
(0)
5 + 1

3∆π + 1
6∆K

)
/F 2π ,

R
(2)
8η =

(−4[2m2K +m2π]β(0)4 − 4m2ηβ
(0)
5 + 1

2∆K

)
/F 2η ,

R
(2)
8η′ =

8
√

2
3

(m2K −m2π)
(
2

◦
m20β5,18 − ṽ(1)2

)/
F 2η′

◦
m20,

R
(2)
0η =

8
√

2
3

(m2K −m2π)ṽ(1)2
/
F 2η

◦
m20,

R
(2)
0η′ = −4

3
(2m2K +m2π)

×(3β(0)4 + β(0)5 − 9β(0)17 + 3β(0)18 )/F 2η′ , (29)

and all remaining entries vanish2. In eq. (29) we have used
the abbreviations

◦
m20 =

2v(2)0
f2
,

ṽ
(1)
2 = 1

4f
2 − 1

2

√
6v(1)3 ,

β5,18 = β(0)5 + 3
2β
(0)
18 . (30)

Within this scenario, η-η′ mixing contributes at next-to-
leading order which is in contradistinction to large-Nc
ChPT [23], where it is a leading-order effect. Inserting
these relations into the tree level result, eq. (11), one ob-
tains the following corrections at sixth chiral order:

A(Z)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ 1
4π2FP

β
(Z)
P (31)

with the coefficients

β
(Z)
π0 = α(tree)π0 R

(2)
π̃0π0 ,

β(Z)η = α(tree)η R
(2)
8η + α(tree)η′ R

(2)
0η ,

β
(Z)
η′ = α(tree)η R

(2)
8η′ + α(tree)η′ R

(2)
0η′ . (32)

Summing all the contributions at order O(p6), we verify
that for the π0 and η decays into two on-shell photons the
dependence on the regularization scale µ cancels out, i.e.
the amplitudes are finite and do not need to be renormal-
ized by counterterms of the unnatural-parity part of the p6
Lagrangian [3,4,7,8]. For the process η′ → γγ, to the con-
trary, the w(1)3 term of the unnatural-parity Lagrangian at

2 Note that we work in the isospin limit, so that the π̃0 field
does not undergo mixing with the η8-η0 system.
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fourth chiral order induces a non-vanishing µ-dependence
via a loop. Also, for the decays with one or both photons
off-shell the divergent parts do not cancel for any of the
decaying mesons and again a residual scale dependence
remains which can be compensated by introducing coun-
terterms at sixth order. The explicit renormalization of
the amplitudes which are induced by the WZW term has
been accomplished in [7,8] and is beyond the scope of the
present investigation, where we restrict ourselves to the
finite pieces of the integrals and counterterms.

In the SU(3) framework without an explicit η′, the
Lagrangian of unnatural parity at O(p6) has been con-
structed in [24]. The relevant terms contributing via tree
diagrams to the decays are presented in appendix A, where
we also show an additional set of counterterms which
arises due to the extension to the U(3) framework. These
terms can be reduced to the following structures (restrict-
ing ourselves to the finite pieces of the coupling constants):

L(6)ct = −w̄(0)1
16
√

2
f

〈φ dv � dv〉 + w̄(1)2
16
f
η0 〈dv � dv〉

+w̄(0)3
32
√

2
f

〈φχdv dv〉 + w̄(0)4
32
√

2
f

〈φχ〉〈dv dv〉

+w̄(1)5
32
f
η0〈χdv dv〉 + w̄(1)6

32
f
η0〈χ〉〈dv dv〉,

(33)

where we employed the LECs of the original countert-
erms in appendix A. Note that the first two terms only
contribute to the decays with off-shell photons. The con-
tribution of L(6)ct to the decays reads

A(ct) = (P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ 1
4π2FP

β
(ct)
P

(34)
with the coefficients

β
(ct)
π0 = −64

3
π2[(k2 + k′2)w̄(0)1 + 4m2πw̄

(0)
3 ],

β(ct)η = − 64
3
√

3
π2

[
(k2 + k′2)w̄(0)1 − 4

3
(4m2K − 7m2π)w̄(0)3

−32(m2K −m2π)w̄(0)4

]
,

β
(ct)
η′ = −128

3
π2

[
(k2 + k′2)

(√
2
3
w̄
(0)
1 − w̄(1)2

)

+
4
3

(m2K + 2m2π)

(√
2
3
w̄
(0)
3 + w̄(1)5

)

+4(2m2K +m2π)

(√
2
3
w̄
(0)
4 + w̄(1)6

) ]
. (35)

3.2 Numerical results at one-loop order

Before implementing the unitarity corrections beyond one
loop within the Bethe-Salpeter approach, we would like to

extract numerical results from the one-loop expressions for
the decays into two physical photons, P → γγ. Combining
all the contributions of the preceding sections we arrive at

A(1-loop) = A(tree)+A(tad)+A(uni)+A(f)+A(Z)+A(ct).
(36)

The decay width Γ is given by

Γ (P → γγ) =
α2m3P

64π3F 2P
|β(1-loop)P | 2 (37)

with α = e2/4π and

β
(1-loop)
P = α(tree)P

(
1 +
δFP

F 2P

)
+

(
β
(tad),π
P + 2β(uni),πP

) ∆π

F 2P

+
(
β
(tad),K
P + 2β(uni),KP

) ∆K

F 2P
+ β(Z)P + β(ct)P . (38)

For comparison with previous work [3,4] we also present
the explicit form of the β(1-loop)P coefficients:

β
(1-loop)
π0 = 1 − 256π2

3
m2πw̄

(0)
3 ,

β(1-loop)η =
1√
3

{
1 +

1
F 2η

32
3

[
1 −

√
2
3

4π2(w(1)1 + w(1)2 )

]

×(m2K −m2π)
ṽ
(1)
2
◦
m20

+
256
9
π2 [(4m2K − 7m2π)w̄(0)3

+24(m2K −m2π)w̄(0)4 ]

}
,

β
(1-loop)
η′ =

[
2

√
2
3
− 16π2

3
(w(1)1 + w(1)2 )

] {
1 +

1
F 2η′

×
[

4(2m2K +m2π)

(
β
(0)
46 + 3β(0)47 − β(0)53 −

√
3
2
β
(1)
52

)]}

+
1
F 2η′

[
16π2(w(1)1 − 2w(1)3 )(∆π +∆K)

+

√
2
3

8
3

(m2K −m2π)

(
2β5,18 − ṽ

(1)
2
◦
m20

) ]

− 512
9
π2

[
(m2K + 2m2π)

(√
2
3
w̄
(0)
3 + w̄(1)5

)

+3(2m2K +m2π)

(√
2
3
w̄
(0)
4 + w̄(1)6

)]
. (39)

For the pion decay constant we take the value Fπ0 =
Fπ+ = 92.4 MeV, while for Fη we employ Fη ≈ 1.3Fπ

which follows from an analysis within the framework of
conventional SU(3) ChPT that is similar to our expres-
sion at the order we are working [21]. Since both the val-
ues of the contact terms w(1)1 , w(1)2 and w(1)3 , which con-
tribute to the η′ decay as well as to the η decay due
to η-η′ mixing, and the values of the O(p6) couplings
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w̄
(0)
1 , . . . , w̄

(0)
4 , w̄

(1)
5 , w̄

(1)
6 are unknown, we first set them

by hand to zero in order to see if a reasonable fit to all
three decay widths is possible without them. The differ-
ence between both mixing angles for η-η′ mixing is pro-
portional to the parameter combination β(0)5 + 3

2β
(0)
18 [15],

which is dominated by β(0)5 , since β(0)18 represents an OZI-
violating correction. We will thus neglect β(0)18 and bor-
row the value for β(0)5 from conventional SU(3) ChPT,
β
(0)
5 = 1.4 · 10−3 [25]. Furthermore, the parameter com-

bination β(0)46 + 3β(0)47 − β(0)53 −
√
3
2β
(1)
52 represents a 1/Nc

suppressed contribution to Fη′ in eq. (18) with respect to
β
(0)
4 + 1

3β
(0)
5 −3β(0)17 +β(0)18 . The value of the latter combina-

tion has been estimated in [15] to be roughly 0.15 × 10−3

and therefore β(0)46 + 3β(0)47 − β(0)53 −
√
3
2β
(1)
52 is expected

to yield a tiny correction to β(1-loop)η′ , so that for our pur-
poses it can be set to zero. The only remaining parameters
are then Fη′ and ṽ(1)2 , which we fit to the decay widths
Γπ0 = 7.74 eV, Γη = 0.46 keV, and Γη′ = 4.28 keV.
These are the central experimental numbers quoted by
the Particle Data Group [26]. The fit yields Fη′ = 1.29Fπ

and ṽ(1)2 = 1.15F 2π/4. The value for ṽ(1)2 is in agreement
with the one derived from an analysis of the pseudoscalar
meson masses and decay constants [15]. The extracted
value for Fη′ , on the other hand, is slightly larger than
the values deduced within the one-mixing-angle scheme,
Fη′ ≈ 1.1Fπ [3,4]. This would indicate that in the present
approach some of the OZI-violating corrections for Fη′ in
eq. (18) are comparable in size with the leading contribu-
tion β(0)5 . If, on the other hand, one fixes Fη′ ≈ 1.1Fπ, a
fit with only ṽ(1)2 as a free parameter is no longer possible
even within the experimental error ranges.

We also compare our results with the one-mixing-angle
scheme by putting β(0)5 to zero. By fitting Fη′ and ṽ(1)2
to the decay widths we obtain Fη′ = 1.15Fπ and ṽ(1)2 =
1.15F 2π/4 which would correspond to a mixing angle of
about −20◦ in nice agreement with [3,4]. If we include
the contact terms w(1)1 , w(1)2 and w(1)3 , we have the freedom
to choose Fη′ = 1.1Fπ while still being able to match the
experimental data. Changing the LECs w(1)1 , w(1)2 and w(1)3
within a reasonable range of −3.0×10−3 . . . 3.0×10−3 that
is motivated by large-Nc considerations and comparison
with the coefficients of the WZW term, we find a variation
of the mixing parameter of ṽ(1)2 = (1.25±0.18)F 2π/4 which
is commensurable with a mixing angle of −21.3◦ ± 3.1◦
in the one-mixing-angle scheme. The lack of knowledge
of the exact values of w(1)1 , w(1)2 and w(1)3 induces a 15%
uncertainty in the determination of the η-η′-mixing angle.

Since with the chosen parameters we are able to ac-
commodate the experimental decay widths, while being
in agreement with results from the conventional SU(3)
framework, there is no indication that the unknown pa-
rameters of sixth chiral order w̄(0)1 , . . . , w̄

(0)
4 , w̄

(1)
5 , w̄

(1)
6

should have values significantly different from zero, which

would lead to sizeable contributions for the decay widths.
Within the one-loop calculation presented here, we can
thus neglect them.

Note also that we work in the isospin limit of equal
up- and down-quark masses. The effect of isospin breaking
is only important for the decay of the π0. It has been
discussed in [23,27,28] and yields a correction of about
5% to the Γπ0 decay width.

4 Unitarity corrections beyond one loop

In the preceding sections, we have identified the different
types of contributions which arise from both the WZW
and the unnatural-parity p4 Lagrangian at tree level and
next-to-leading order, while the numerous counterterms
of the unnatural-parity p6 Lagrangian were neglected.
The proliferation of such counterterms makes a unique
fit to data impossible [4,7] and one must resort to model-
dependent assumptions. One possible way of estimating
the size of the different parameters is to calculate contri-
butions from vector meson exchange [8], e.g., by employing
the hidden symmetry formulation of Bando et al. [29,30].
To this end, an effective Lagrangian of unnatural parity
and including the nonet of the lowest-lying vector mesons,
V , is constructed. Then the vector mesons are integrated
out of the effective theory under the assumption that their
masses are much larger than the momenta which gener-
ates counterterms of order p6 and higher. The unknown
counterterms of the unnatural-parity p6 Lagrangian with-
out vector mesons can thus be written in terms of a few
parameters of the vector meson Lagrangian. The coupling
constants of the latter can be extracted up to a sign and
within certain error bars from radiative decay widths of
the vector mesons, such as ω → π0γ and ρ+ → π+γ. (More
recently, the parameters of the vector meson Lagrangian
have been constrained by the short-distance behavior of
QCD [31].) This approach has been applied to the decay
process P → γγ∗ in [8] which amounts to the two-step
chain P → V V → γγ∗ with the virtual vector mesons
being treated as infinitely heavy states. Besides giving es-
timates for the LECs of the higher-order p6 Lagrangian,
this procedure reproduces also the experimental P → γγ∗
slopes [8] and must be added to the one-loop contributions
to the slopes which are extracted from eq. (24). These are
much smaller in magnitude and far away from the exper-
imental data [32–34]. We will discuss this point in more
detail in sect. 5 when we present the numerical results.

On the other hand, some of the vector mesons such
as the ρ(770) can be described as bound states of two
Goldstone bosons [17]. Effective potentials for meson-
meson scattering are derived from the chiral Lagrangian
for the pseudoscalar mesons and iterated within a coupled-
channel BSE which satisfies unitarity constraints for the
partial-wave amplitudes. With a small set of parameters
a large variety of meson-meson scattering data could be
explained up to center-of-mass energies of 1.2 GeV. In [18]
it was shown that the inclusion of the η′ in this framework
does not spoil the results from [17] for energies below 1.2
GeV as one would expect naively. We adopt the approach
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of [18] here and will not include the vector mesons explic-
itly in the theory. They will be rather generated from com-
posed states of two pseudoscalar mesons, whereas com-
posed states of three pseudoscalar mesons such as the
ω(782) are beyond the scope of the present investigation
and will be neglected. The additional parameters in the
coupled-channel analysis are fixed from a fit to the p-wave
phase shifts and we do not have to deal with additional
coupling constants for the vector mesons which always
introduce a theoretical uncertainty. Furthermore, our ap-
proach is suited to go to higher photon virtualities which
presents a problem in the resonance saturation scheme,
since large momenta in the vector meson propagators can-
not be simply dropped when integrating them out of the
effective theory.

Finally, our investigation includes and distinguishes
the processes P → V γ(∗) → γ(∗)γ(∗) and P → V V →
γ(∗)γ(∗), where the photons can be either on- or off-shell.
In the approach with explicit vector mesons, which has
been applied so far only to the decays with at least one on-
shell photon, the first decay chain is not directly present.
It is rather derived from the latter one by integrating out
the vector meson coupled to the physical photon. There-
fore, for the decays with one on-shell photon no clear dis-
tinction can be made in this scenario between a decay
chain with one or two virtual vector mesons as suggested
by complete Vector Meson Dominance. A measurement of
the decays with two off-shell photons would help to clarify
the situation.

4.1 Bethe-Salpeter equation

The underlying idea of our approach is as follows. The
incoming pseudoscalar meson P can decay via a vertex
of either the WZW Lagrangian, LWZW, or the unnatural-
parity Lagrangian at fourth chiral order, L(4)ct in eq. (10),
directly into one of the following three channels: two pho-
tons, a photon and two pseudoscalar mesons, or four pseu-
doscalar mesons. The mesons can combine to pairs and
rescatter an arbitrary number of times before they even-
tually couple to a photon, see fig. 3 for illustration.

The rescattering process can be described by applica-
tion of the BSE which generates the propagator for two
interacting particles. A similar approach has already been
successfully employed for the hadronic decay modes of η
and η′ [19], where only s-wave amplitudes were considered.
Here, we extend it to photonic decays and p-waves. In this
section, we describe the BSE approach for meson-meson
scattering in general focusing on the p-wave contributions,
while in the next section this method will be embedded
into the two-photon decays of π0, η and η′.

In order to describe meson-meson scattering accurately
within the coupled-channel approaches, it is necessary to
construct the interaction kernel for the two mesons from
the effective Lagrangian up to fourth chiral order. In addi-
tion to L(0+2) and the operatorsO4, O5, O17, O18 from L(4)

Fig. 3. Sample rescattering process in the decay P → γ(∗)γ(∗).

in eq. (20), we also include at fourth chiral order the terms

O0 = 〈CµCνCµCν〉, O1 = 〈CµCµ〉〈CνCν〉,
O2 = 〈CµCν〉〈CµCν〉, O3 = 〈CµCµC

νCν〉,
O13 = −〈Cµ〉〈CµC

νCν〉, O14 = −〈Cµ〉〈Cµ〉〈CνCν〉,
O15 = −〈Cµ〉〈Cν〉〈CµCν〉, O16 = 〈Cµ〉〈Cµ〉〈Cν〉〈Cν〉,
O21 = 〈CµCµiN〉, O22 = 〈CµCµ〉〈iN〉,
O23 = 〈Cµ〉〈CµiN〉, O24 = 〈Cµ〉〈Cµ〉〈iN〉.

(40)
Usually the β0-term is not presented in conventional
ChPT, since there is a Cayley-Hamilton matrix identity
that enables one to remove this term leading to modified
coefficients βi, i = 1, 2, 3, 13, 14, 15, 16 [14], but for our
purposes it turns out to be more convenient to include
it. Hence, we do not make use of the Cayley-Hamilton
identity and keep all couplings, in order to work with
the most general expressions in terms of these param-
eters. One can then drop one of the βi involved in the
Cayley-Hamilton identity at any stage of the calculation.

From the contact interactions of the effective La-
grangian up to fourth chiral order we derive the center-of-
mass scattering amplitude A(θ), where θ is the c.m. scat-
tering angle. The partial-wave expansion for A(θ) reads

A(θ) =
2∑

l=0

(2l + 1)AlPl(cos θ), (41)

where Al is the effective potential for angular momen-
tum l obtained from the contact interactions and Pl is the
l-th Legendre polynomial. It is most convenient to work
in the isospin basis and to characterize the meson-meson
states by their total isospin. For the p-waves, e.g., the rel-
evant two-particle states have either isospin 0, (KK̄, ηη′),
or isospin 1, (ππ, πη,KK̄, πη′).

For each partial-wave l unitarity imposes a restriction
on the (inverse) T -matrix above the pertinent thresholds,

ImT−1
l = − |qcm|

8π
√
s

(42)

with
√
s and qcm being the energy and the three-

momentum of the particles in the center-of-mass frame of
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Fig. 4. Diagrammatic illustration of the Bethe-Salpeter equation for meson-meson rescattering. The center-of-mass momentum
is denoted by p = qi + q̄i = qf + q̄f = k + k̄ with p2 = s.

the channel under consideration, respectively. Hence, the
imaginary part of T−1

l is equal to the imaginary piece of
the fundamental scalar loop integral Gmm̄ above thresh-
old, eq. (27).

Following the work of [35,36] in the baryonic sector,
we will adjust the real piece of Gmm̄ by introducing a
scale-dependent constant for each channel in analogy to
a subtraction constant of a dispersion relation for T−1

l .
This will compensate the regularization scale dependence
of Gmm̄ and bring our results into better agreement with
experimental data. In a more general way, one could model
the real parts by taking any analytic function in s and the
masses of the particles. This option has been successfully
applied for the case of SU(2) ChPT in [37], but is not
necessary in the present work, as we can reproduce the
experimental phase shifts for s- and p-wave meson-meson
scattering already very accurately with the first method.

The inverse of the amplitude T−1 can be decomposed
into real and imaginary parts3

T−1 = τ−1 + G̃ (43)

with
G̃mm̄ = Gmm̄(µ) + amm̄(µ), (44)

where τ−1 and Re[G̃] give the real part and Im[G̃] gives the
imaginary part of T−1 as required by unitarity, eq. (42).
The scale dependences of G and a on µ cancel each other
and we will choose the constant a to depend on the angular
momentum l. Inverting (43) yields

T = [1+ τ · G̃]−1 τ , (45)

which is understood to be a matrix equation that couples
the different channels. The matrix G̃ is diagonal and in-
cludes the expressions for the loop integrals in each chan-
nel. Expanding expression (45),

T = τ − τ · G̃ · τ . . . , (46)

and matching the first term in the expansion to our tree
level amplitude for each partial wave,

τl = Al , (47)

our final expression for the T -matrix reads

T = [1+A · G̃]−1 A , (48)
3 For brevity we suppress the subscript l.

Fig. 5. Fit to the experimental phase shifts [38,39] for ππ →
ππ in the I = J = 1 channel.

which amounts to a summation of a bubble chain in the
s-channel. This is equivalent to a Bethe-Salpeter equation
with A as potential, see fig. 4.

The unknown LECs of the chiral Lagrangian must be
fitted to experimental data. This has partially been ac-
complished in [18], where after applying the same ap-
proach as in the present investigation we constrained the
LECs of the Lagrangian up to fourth chiral order by com-
paring the results with the experimental s-wave phase
shifts of meson-meson scattering. Agreement was achieved
in the isospin I = 0, 12 channels up to 1.2 GeV and in the
isospin I = 3

2 , 2 channels up to 1.5 GeV. However, vari-
ations of some of the parameters which have been set to
zero for simplicity do not yield any significant effect for
the s-wave phase shifts. In fact, some of them could be
constrained from the hadronic decays of the η and η′ [19].
A good fit to the decays [19] and the s-wave scattering
data [18] is given by

ṽ
(1)
2 = ṽ(2)2 = 0,

β
(0)
0 = 0.56 × 10−3, β

(0)
3 = −0.3 × 10−3,

β
(0)
5 = 1.4 × 10−3, β

(0)
6 = 0.06 × 10−3

(49)

with ṽ(2)2 = 1
4f
2 − √

6v(1)3 − 3v(2)2 and all the remaining
parameters being zero. It is not trivial that with such a
small number of parameters we have been able to explain
a variety of data within the approach.

In the present investigation, we are particularly inter-
ested in the p-wave amplitudes which will be the only con-
tributions to the photonic decays. Our fit to the scattering
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Fig. 6. Set of meson-meson rescattering processes in the decay P → γ(∗)γ(∗) included in our approach.

data from [38] and [39] is shown in fig. 5. We are able to
use the same set of parameters as for the s-wave scatter-
ing in [18] with only one non-vanishing scale-dependent
constant

amπmπ
= −4.37 × 10−2 (50)

at µ = 1.0 GeV and we take µ = 1.0 GeV in all channels.
It is also important to note that the parameter choice
in eq. (49) is not unique, since variations in one of the
parameters may be compensated by the other ones.
Nevertheless, we prefer to work with this choice; it
is capable of describing the experimental phase shifts
both for s- and p-waves with a small set of parameters
and motivated by the assumption that most of the
OZI-violating and 1/Nc-suppressed parameters are not
important, although β(0)6 and v(1)3 , v

(2)
2 in ṽ(1)2 , ṽ

(2)
2 have

small but non-vanishing values.

4.2 Meson-meson rescattering in π0, η, η′ → γγ

The meson-meson rescattering processes from the previ-
ous section can be employed as effective interaction ker-
nels for two mesons in the decay process, see fig. 6. In
order to perform the remaining loop integrations in fig. 6
which are not included in the effective two-meson interac-
tion kernel iT , we rewrite the partial-wave decomposition
of the T -matrix of the meson-meson scattering process as
follows [18]. The general expression for T depends only
on scalar combinations of the momenta which can be ex-
pressed in terms of the Mandelstam variables. The Man-

delstam invariants s, t and u are defined as the center-of-
mass energy squared s = (qi + q̄i)2 = p2, the momentum
transfer squared t = (qi − qf)2 and the crossed momen-
tum transfer squared u = (qi − q̄f)2, where we used the
notation of the previous section, see fig. 4. The constraint
s+t+u = q2i +q̄2i +q2f +q̄2f = m2i +m̄2i +m2f +m̄2f allows one
to neglect the combination t+ u in favor of t− u and the
scalar amplitude can be written as T (s, t − u). Since we
restrict ourselves to the effective Lagrangian up to fourth
chiral order, the partial-wave decomposition of T —which
is the expansion of T in t− u— is given by

T =
∑

l T̂lJl = T̂sJs + T̂pJp + T̂dJd, (51)

where the partial-wave operator Jl is a polynomial of de-
gree l in t − u and proportional to the Legendre polyno-
mial Pl in the cosine of the scattering angle. The Jl can
be written as

Js = 1,

Jp = hµνq
µ
i q

ν
f =

t− u
4

+
(q2i − q̄2i )(q2f − q̄2f )

4s
,

Jd =J2p − hµνq
µ
i q

ν
i hρσq

ρ
f q

σ
f

3
, (52)

with
hµν = −gµν + pµpν/p2. (53)

It is now straightforward to perform the remaining loop
calculations in fig. 6, since the T̂l depend only on the Man-
delstam variable s, i.e. the momentum squared of one of
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the photons. Hence, they are independent of the loop mo-
menta and can be factored out of the loop integral. The
remaining pieces Jl can be expressed in terms of the loop
momenta and the loop integrations can be performed.
In this way, the T -matrix is treated as an effective ver-
tex, which summarizes the infinite chain of meson-meson
rescattering processes. One checks explicitly that s- and
d-waves drop out, whereas only the t− u piece in Jp con-
tributes. Only the channels (ππ,KK̄) contribute so that
q2f = q̄2f , and hence the limit s → 0 for on-shell photons
does not yield a divergence in Jp. The results for the dia-
grams of fig. 6 read

A(1CC)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ

× 1
4π2F 3P

∑
a

′
γ
(1CC),a
P

[
Ĩ(m2a; k2)[T̂ (a→π±)

p (k2)Ĩ(m2π; k2)

+T̂ (a→K±)
p (k2)Ĩ(m2K ; k2)] + Ĩ(m2a; k′2)

×[T̂ (a→π±)
p (k′2)Ĩ(m2π; k′2) + T̂ (a→K±)

p (k′2)Ĩ(m2K ; k′2)]
]

(54)

for the one vector meson exchange and

A(2CC)(P → γ(∗)γ(∗)) = e2kµενk′αε
′
βε

µναβ

× 1
4π2F 5P

∑
a,b

′
γ
(2CC),a,b
P Ĩ(m2a; k2)[T̂ (a→π±)

p (k2)Ĩ(m2π; k2)

+T̂ (a→K±)
p (k2)Ĩ(m2K ; k2)]Ĩ(m2b ; k′2)

×[T̂ (b→π±)
p (k′2)Ĩ(m2π; k′2) + T̂ (b→K±)

p (k′2)Ĩ(m2K ; k′2)]

(55)

for the two vector meson exchange, where T̂ (a→b)
p denotes

the p-wave amplitude in eq. (51) for channel a scattering
into channel b. The symbol

∑′ indicates summation over
the meson pairs π+π−, K+K− and K0K̄0. Note that the
exchange of two vector mesons arises due to the five-meson
vertex in the piece 〈Σ5〉 of the WZW action, eq. (6). The
coefficients in eq. (54) are given by

γ
(1CC),π±

π0 = γ(1CC),K
±

π0 = γ(1CC),K
0K̄0

π0 = −1
2
,

γ(1CC),π
±

η = γ(1CC),K
±

η =

−1
6

[√
3 +

4
√

2
3

(m2K −m2π)
ṽ
(1)
2

v
(2)
0

(
√

6 − 48π2w(1)3 )

]
,

γ(1CC),K
0K̄0

η =
√

3
2
, γ

(1CC),K0K̄0

η′ =

2

√
2
3

(m2K −m2π)

(
− ṽ

(1)
2

v
(2)
0

+ 4β5,18

)
,

γ
(1CC),π±

η′ = γ(1CC),K
±

η′ = −1
6

[√
6 − 48π2w(1)3

+
4
√

6
3

(m2K −m2π)

(
− ṽ

(1)
2

v
(2)
0

+ 4β5,18

)]
. (56)

The coefficients γ(2CC),a,b
P for the case of two coupled

channels are symmetric under a ↔ b. The non-vanishing
ones read

γ
(2CC),π±,K±

π0 = γ(2CC),π
±,K0K̄0

π0 =
3
4
,

γ(2CC),π
±,K±

η = −γ(2CC),π±,K0K̄0

η

= −1
2
γ(2CC),K

±,K0K̄0

η =
√

3
4
,

γ
(2CC),π±,K±

η′ = −γ(2CC),π±,K0K̄0

η′ = −1
2
γ
(2CC),K±,K0K̄0

η′

=

√
2
3

(m2K −m2π)

(
− ṽ

(1)
2

v
(2)
0

+ 4β5,18

)
. (57)

The loop integral Ĩ in eqs. (54,55) is given by

Ĩ(m2; p2) = I(m2; p2) + CP p
2 , (58)

where the integral I is defined in eq. (25). Here we made
use of the freedom to take arbitrary values for the ana-
lytic pieces of the integrals which corresponds to a spe-
cific choice of counterterm contributions. To be more pre-
cise, we have kept in the pion loops a term of the type p2
(Cπ = − 1

6π2 ), while neglecting all other analytic portions.
Alternatively, one could have altered the regularization
scale µ of the integrals relevant for the p2-term, but we
preferred to take explicit analytic pieces, while keeping
µ = 1 GeV fixed in all channels, which is similar to adding
a subtraction constant as in eq. (44). As we will see in the
next section, the inclusion of such analytic portions which
are beyond the accuracy of the one-loop calculation yields
an improved fit to the experimental data and accounts for
dynamical effects of higher chiral order.

Clearly, we are missing further unitarity corrections
beyond the one-loop calculation. However, from the dis-
cussion below it will become clear that the set of diagrams
included in our model is consistent with available data.

5 Numerical results

In this section, we will discuss the numerical results of our
calculation. In order to compare our results with exper-
imental data, we include the counterterm contributions
from eq. (34). At the one-loop level, it was not necessary
to take them into account, as the one-loop formulae could
already be brought to agreement with the experimental
decay widths by fitting either Fη′ and ṽ(1)2 or ṽ(1)2 and
one of the contact terms w(1)1 , w(1)2 , w(1)3 . The inclusion
of the coupled-channel analysis, on the other hand, leads
to changes in the decay amplitude for two on-shell pho-
tons which must be compensated by counterterms that
are proportional to the quark mass matrix, i.e. those with
the coefficients w̄(0)3 , w̄(0)4 , w̄(1)5 and w̄(1)6 . It turns out that
the inclusion of counterterms of sixth chiral order as dis-
cussed in sect. 3.1 is sufficient to compensate these ad-
ditional contributions. Furthermore, k2-dependent coun-
terterms (w̄(0)1 , w̄(1)2 ) are needed to obtain agreement with
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Fig. 7. Results of the one-loop calculation (dotted line), including the diagrams of figs. 6a, b (dashed line), full calculation
(solid line). Data: solid squares [40], open squares [41], diamond [26], open circles [42], solid circles [43].

data for space-like photons with squared four-momenta
k2 < 0, since the non-analytic contributions from the one-
loop diagrams are too small to account for the behavior of
the transition form factor in the space-like region, where
furthermore contributions from the BSE are almost neg-
ligible. The two possible terms from the sixth order La-
grangian L(6)ct , eq. (33), are sufficient to bring our results
into better agreement with the data for photon virtualities
up to k2 ≈ −0.8 GeV2. The values of the counterterms are
(in units of GeV−2)

w̄
(0)
1 = −5.5 × 10−3, w̄

(1)
2 = −1.5 × 10−3,

w̄
(0)
3 = 1.31 × 10−2, w̄

(0)
4 = −1.4 × 10−3,

w̄
(1)
5 = −0.47 × 10−3, w̄

(1)
6 = −0.16 × 10−3. (59)

The parameters w̄(1)5 and w̄(1)6 enter only in the combina-
tion 4

3 (m2K + 2m2π)w̄(1)5 + 4(2m2K +m2π)w̄(1)6 , see eq. (35),
hence their values cannot be fixed separately. Since the
w̄
(1)
6 term is 1/Nc suppressed, we choose w̄(1)6 = w̄(1)5 /3.

The results of our model are compared in fig. 7 with
the transition form factors for the decay of the π0, η and η′
into one on-shell and one off-shell photon. The transition
form factor FP (k2; k′2) is defined as

A(P → γ∗γ(∗)) = kµενk′αε
′
βε

µναβFP (k2; k′2) (60)

and we plot the quantity m3
P

64π |FP (k2; k′2 = 0)|2 which
yields the width of the decay into two physical photons
at k2 = 0.

The overall good agreement with the data indicates
that our model is capturing the important physics. In our
fit, we have set the non-anomalous terms of unnatural par-
ity at fourth chiral order to zero, w(1)1 = w(1)2 = w(1)3 = 0,
since a good fit to the data can already be achieved with-
out them, while keeping Fη′ fixed at Fη′ = 1.1 Fπ. Fur-
thermore, we set the mixing parameter ṽ(1)2 to zero which
is consistent with a previous coupled-channel calculation
on hadronic decays of the η and η′ [19]. It should be em-
phasized that for a non-perturbative coupled-channel ap-
proach the values of the coupling constants do not nec-
essarily coincide with those from a perturbative loop ex-
pansion, which was already pointed out in [19]. It is there-
fore not surprising that ṽ(1)2 and the w(1)i differ in both
schemes. The inclusion of the diagrams in figs. 6a, b which
contain only one coupled channel and thus are associated
with the exchange of only one vector meson already yields
the crucial structure of the curves (dashed line). The ex-
change of two vector mesons (fig. 6c) is merely a small
correction which could even be compensated by a change
of the parameters of the O(p6) counterterms. For com-
pleteness, we have also shown the numerical results from
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Fig. 8. Dependence of Fη and Fη′ on the mixing parameter

ṽ
(1)
2 : ṽ

(1)
2 = 0 (solid line), ṽ

(1)
2 = 0.5F 2

π/4 (dashed line), ṽ
(1)
2 =

1.15F 2
π/4 (dotted line).

the one-loop calculation which have been supplemented
by the k2-dependent counterterms at sixth chiral order,
in order to be in better agreement for k2 < 0. Due to this
procedure the k2-dependent terms differ from those in the
coupled-channel approach. Nevertheless, with this choice
of parameters it is not possible to reproduce the sharp in-
crease of the form factor for time-like photons, k2 > 0, at
the one-loop level, and we miss in any case the resonance
structure in the η′ decay.

The dependence of our results on the η-η′ mixing pa-
rameter ṽ(1)2 is depicted in fig. 8. We have plotted the
curves for different values of ṽ(1)2 , which indicate that a
value for ṽ(1)2 around zero is in better agreement with the
data. The results for π0 → γ∗γ are, of course, not affected
by changing ṽ(1)2 .

In fig. 9 we show our results for different values of
the LEC w(1)3 . When keeping ṽ(1)2 = 0 only the process
η′ → γ∗γ is altered. From the plot it can be seen that
w
(1)
3 has significant influence on the peak structure at k2 ≈

0.6 GeV2 and we can exclude values w(1)3 > 2.0 × 10−3.

Another quantity of interest is the slope parameter of
the transition form factor. It is defined as the logarithmic

Fig. 9. Dependence of Fη′ on the LEC w
(1)
3 : w

(1)
3 = −3.0 ×

10−3 (dashed line), w
(1)
3 = 0 (solid line), w

(1)
3 = 3.0 × 10−3

(dotted line).

Table 1. Slope parameters bP in units of GeV−2 derived
from pole fits to the experimental data, the next-to-leading
order calculation, including one coupled-channel (diagrams
fig. 6a, b), and the full calculation.

Experiment NLO 1 CC Full

π0 1.76 ± 0.22 [26] 1.19 1.98 1.95

1.9 ± 0.4 [42]
η 2.0 ± 0.5 [41] 0.73 1.57 1.58

1.42 ± 0.21 [40]

1.7 ± 0.8 [43]
η′ 1.38 ± 0.23 [41] 0.85 1.78 1.79

1.59 ± 0.18 [40]

derivative of the form factor FP at k2 = 0,

bP =
d

dk2
lnFP (k2; k′2 = 0)

∣∣∣∣
k2=0

. (61)

In table 1 we compare our values with simple pole fits to
the form factors. The value for π0 is the world average
given in [26]. For η and η′ we cite three measurements,
the Lepton-G Collaboration [42,43], the TPC/2γ Collab-
oration [41] and the CELLO Collaboration [40]. From a
pole fit a characteristic mass ΛP is extracted and related
to the slope parameter via bP = 1/Λ2P . The obtained
values are given by Λη = (0.72 ± 0.09) GeV [42], Λη =
(0.70 ± 0.08) GeV [41], Λη = (0.84 ± 0.06) GeV [40] and
Λη′ = (0.77±0.18) GeV [43], Λη′ = (0.85±0.07) GeV [41],
Λη′ = (0.79 ± 0.04) GeV [40]. With one exception we
achieve good agreement within error bars with the pole
fits to the form factors. We point out that in the determi-
nation of the given errors for bP it has not been taken into
account that, in principle, a different ansatz for the form
factor can lead to different values of the slope parameter.
In our model a significant part of the slope parameters is
induced by the meson-meson rescattering processes. Again
the exchange of two vector mesons plays a negligible role.
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Fig. 10. Prediction of the transition form factors for two off-shell photons with k2 = k′2 resulting from the full calculation
(solid line) and from a calculation without the contribution from fig. 6c with two coupled channels (dashed line, almost on top
of solid line). For η′ → γ∗γ∗ we also show the transition form factor from the full calculation in the (k2, k′2)-plane.

Within our model, contributions from composed states
of three pseudoscalar mesons which would correspond to
the ω(782) have been neglected. However, the effects of the
ω(782) should be similar to those of the ρ(770) due to their
almost equal masses. It may well be that by keeping some
of the analytic portions of the loop integrals in eqs. (54,
55) which amounts to a particular choice of higher-order
counterterms, we took into account the dynamical effects
of the ω(782). Within our model, the contributions from
the vector mesons should thus be regarded to be a com-
bination of both the ω(782) and the ρ(770).

The contributions of the two vector meson exchange
diagrams, on the other hand, are almost negligible, as can
be seen from fig. 7. This is in sharp contradistinction to the
complete Vector Meson Dominance picture where the pho-
tons can only couple via the exchange of vector mesons.
Of course, when coupling to an on-shell photon, the per-
tinent vector meson propagator reduces to a vertex, but
with both photons off-shell, the two approaches should
yield different predictions. In fig. 10, we show our pre-
dictions for two off-shell photons for π0, η, η′ decays with
k2 = k′2 as well as the η′ transition form factor in the
(k2, k′2)-plane. As in the case with one off-shell photon,
the result of a calculation with one coupled channel is al-
most identical to the full calculation. A measurement of
the transition form factors for two off-shell photons could

serve as a check of our model and help to clarify whether
the exchange of only one or rather two vector mesons oc-
curs in these decays. For one and two off-shell photons
with larger space-like momenta the pion transition form
factor has been calculated within an instanton model of
QCD [44]. For small negative photon virtualities the re-
sults are quite similar to ours.

6 Conclusions

In the present work, we have investigated the two-photon
decays of π0, η and η′ within a chiral unitary framework.
To this end, we have supplemented the one-loop calcula-
tion of chiral perturbation theory by a Bethe-Salpeter ap-
proach which satisfies unitarity constraints and generates
vector mesons from composed states of two pseudoscalar
mesons.

While the one-loop result is sufficient to achieve agree-
ment with the decay widths P → γγ (P = π0, η, η′), the
vector meson exchange is crucial to reproduce the sharp
increase of the transition form factor for time-like photons
in the decays P → γγ∗. Our method reproduces also the
resonance structure in the transition form factor of the de-
cay η′ → γγ∗ at photon virtualities around k2 ≈ 0.6 GeV2.
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Furthermore, our approach distinguishes between sin-
gle and double vector meson exchange, the latter one being
the only contribution in the complete Vector Meson Domi-
nance picture. Our study suggests that for the decays with
off-shell photons the exchange of one vector meson is the
dominant contribution, whereas the two vector exchange is
almost negligible which is in contradistinction to complete
Vector Meson Dominance. The available data on electro-
magnetic transition form factors is restricted to decays
with exactly one off-shell photon. When coupling to an
on-shell photon, the pertinent vector meson propagator re-
duces to a vertex, so that no clear distinction can be made
between the two approaches. However, an experiment with
two off-shell photons should be able to clarify whether
one or two vector meson exchange occurs. The question
whether double Vector Meson Dominance holds is also an
important issue for kaon decays and the anomalous mag-
netic moment of the muon. We have presented predictions
for the decays with two off-shell photons, and again the
exchange of two vector mesons plays a minor role.

Within our model, contributions from composed states
of three pseudoscalar mesons which would correspond to
the ω(782) have been neglected. However, the effects of
the ω(782) should be similar to those of the ρ(770). It
may well be, that by keeping some of the analytic por-
tions of the loop integrals in our coupled-channel analysis
which amounts to a particular choice of higher-order coun-
terterms, we took into account the dynamical effects of the
ω(782). Within our model, the contributions from the vec-
tor mesons should thus be regarded to be a combination
of both the ω(782) and the ρ(770).

The present approach can be applied in a straightfor-
ward manner to the anomalous decays η, η′ → π+π−γ and
the radiative decays η, η′ → π0γγ which will be investi-
gated in future studies.

We are grateful to N. Beisert and B.M.K. Nefkens for useful
discussions.

Appendix A. Counterterms of order O(p6)

In this section, we discuss the relevant counterterms of
order O(p6). For the covariant derivative and the field
strength tensors we use the following notation:

DµU = ∂µU − ir̃µU + iU l̃µ,

R̃µν = ∂µr̃ν − ∂ν r̃µ − i[r̃µ, r̃ν ],

L̃µν = ∂µ l̃ν − ∂ν l̃µ − i[l̃µ, l̃ν ], (A.1)

where r̃µ = vµ+ãµ, l̃µ = vµ−ãµ and ãµ = aµ+
√
6λ−f
3f 〈aµ〉.

The replacement of the original field strength tensors Rµν ,
Lµν by the new quantities R̃µν , L̃µν leads to additional
counterterms which involve the derivative of the singlet
component of the axial-vector field, 〈∂µaν〉; however, such
counterterms do not contribute to the processes discussed
in the present work and are neglected.

In the SU(3) framework there are numerous terms con-
taining six derivatives which, according to [24], can be re-
duced to only one contribution by utilizing methods such
as partial integration, equation of motion, epsilon relations
and Bianchi identities. In our notation it is given by

i W̄1ε
µναβ〈(2U†DλR̃λµU + 2DλL̃λµ + U†R̃λµD

λU

+DλU†R̃λµU + U†DλUL̃λµU
† + L̃λµD

λU†U)H̃να Cβ〉,
(A.2)

where we made use of the abbreviations

H̃µν = U†R̃µνU + L̃µν , Cµ = U†DµU,

M = U†χ+ χ†U, N = U†χ− χ†U. (A.3)

For the decays into two photons, eq. (A.2) yields the con-
tribution (in the differential form notation of [5])

−w̄(0)1
16
√

2
f

〈φ dv � dv〉. (A.4)

From the extension to the U(3) framework there arise
several more terms which reduce after applying the above-
mentioned methods to the relevant contribution:

w̄
(1)
2

16
f
η0 〈dv � dv〉. (A.5)

Furthermore, there are terms of order O(p6) that con-
tain the chiral-symmetry-breaking object χ = 2BM with
M being the quark mass matrix:

L(6)χ = i W̄3εµναβ〈NH̃µνH̃αβ〉 + i W̄4εµναβ〈N〉〈H̃µνH̃αβ〉

+W̄5εµναβ〈MH̃µνH̃αβ〉 + W̄6εµναβ〈M〉〈H̃µνH̃αβ〉.
(A.6)

The first two terms arise from conventional SU(3) theory
whereas the last two are due to the extension to U(3). In
the differential form notation the relevant contributions
to the decay P → γ(∗)γ(∗) are given by the contact terms

L(6)χ, ct = w̄(0)3
32
√

2
f

〈φχdv dv〉 + w̄(0)4
32
√

2
f

〈φχ〉〈dv dv〉

+w̄(1)5
32
f
η0〈χdv dv〉 + w̄(1)6

32
f
η0〈χ〉〈dv dv〉.

(A.7)

Combining all counterterms of order O(p6) we obtain

L(6)ct = −w̄(0)1
16
√

2
f

〈φ dv � dv〉

+w̄(1)2
16
f
η0 〈dv � dv〉 + L(6)χ, ct . (A.8)
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